
 

 
283 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

Available at www.rjetm.in/ 

A Review of Methodologies for AI-Based Control and Power Quality 

Enhancement in Solar–Wind Hybrid Energy Systems 

1Arvind Verma, 2Amit Kumar Asthana 
1Research Scholar, Department of Mechanical Engineering, Truba Institute of Engineering & Information Technology 

Bhopal (M.P.) India 
2Assistant Professor, Department of Mechanical Engineering, Truba Institute of Engineering & Information Technology 

Bhopal (M.P.) India 

arvindglv@rediffmail.com , asthana603@gmail.com 
  
* Corresponding Author: Arvind Verma       

 

Abstract:  

With rising penetration of renewable energy into modern power grids, hybrid systems need efficient control and power 

quality management. Among various alternatives, AI-based control methods have proved to be promising means for control 

optimization to keep grid stability and improving power quality in solar–wind hybrid energy systems. This review serves 

to synthesize more recent developments with AI-based methods for converter control, energy management, and harmonic 

mitigation. Conventional methods such as PWM and SVPWM are considered, as well as more advanced ML and RL 

frameworks that allow adaptive decision-making when considering variations in environmental conditions. Special 

emphasis is given to how MATLAB/Simulink is applied in modeling, simulation, and validation of hybrid systems and 

optimization techniques such as genetic algorithms and deep learning models from an MPPT and converter efficiency 

perspective. The paper then reviews performance evaluation criteria which include efficiency, total harmonic distortion 

(THD), reliability, and cost-effectiveness. The findings of this study suggest that AI-based hybrid energy systems can 

operate with greater efficiency and improve grid code compliance while reducing GHG emissions in a significant way, 

thus paving a sustainable way for smart grids of the future. 

Keywords: Solar–wind hybrid system, Grid integration, Inverter control, Artificial intelligence, Total harmonic distortion, 

Reactive power compensation  

 

I. INTRODUCTION 

The integration of renewable resources in present-day power systems has witnessed significant growth worldwide, 

becoming essential to cope with the rising global energy needs, with the idea of lessening the dependence on fossil fuels 

and environmental hazard. Solar–wind hybrid energy systems have recently been considered favorable because of their 

somewhat complementary generation profiles, thereby allowing better reliability and resource utilization, as compared to 

standalone sources [1]. Adversely, the intermittent and stochastic nature of solar irradiation and wind speed operating on 

various timescales result in many challenges to grid stability, thus contributing to voltage fluctuations, harmonic distortion, 

and frequency deviations, which are detrimental to power quality [2]. Classical control approaches may indeed provide 

suitable control under steady conditions but they tend to be inadequate in adapting to nonlinear conditions and dynamically 

changing operating environments Usually employing AI-base strategies, such as machine learning, deep learning, and 

reinforcement learning, to embrace data-drive adaptive control would render operation more efficient with robust power 

quality management and sustainability enhancement of hybrid systems [3].Figure 1 shows Inverter Control Cycle. 

 
Figure 1: Inverter Control Cycle [4] 
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a) Overview of Solar–Wind Hybrid Energy Systems 

The solar–wind hybrid energy system essentially comprises the photovoltaic panels, wind turbines, power electronic 

converters, storage, and a control system to enable coordinated operation. Depending on the application, these systems can 

be configured as grid-connected ones that export excess energy to the utility grid, or they can be off-grid ones that provide 

energy to isolated loads with relatively higher reliance on storage [4]. Despite their advantages, SWHES often face critical 

quality-of-power-related issues, such as harmonic distortions caused by converters and voltage fluctuations due to the 

intermittent nature of the resources. Also, frequency instability arises with the variation in load and generation [5]. 

 

b) Conventional Control Strategies 

Regulation of solar–wind hybrid energy systems with conventional control laws—particularly PI and PID methods—is 

ensured due to their ease of implementation [6]-[7]. These controllers have been traditionally implemented in grid-

connected converters for current/voltage regulation, with further enhancements in response time achieved by employing 

heuristic optimization methods like particle swarm optimization (PSO) and grey wolf optimization (GWO) under varying 

operating conditions [8]- [9]. Thereafter, the fuzzy logic controllers emerged, encoding heuristic rules for addressing 

system uncertainties and nonlinearities better than classical PI/PID, with hybrid Fuzzy–PI methods performing better in 

voltage regulation and harmonic reduction [10]-[11]. Incidentally, all these controllers with their merits stand crippled in 

the face of intermittency and nonlinearities, leading to instabilities, increased total harmonic distortion (THD), and poor 

frequency regulation in a weak or islanded grid [12]-[13]. Therefore, adaptive and metaheuristics-tuned ones provide good 

robustness; however, their inherent assumptions of linearization plus fixed parameters stand as a stumbling block for 

scaling, and this sets the scenario for the AI-based control approaches [14]. 

 

II. Optimization and Reliability in Source-Side Microgrid Control 

In the advancing world of hybrid renewable energy systems (HRES), researchers are deliberating new approaches to 

improve efficiency, reliability, and sustainability. One set of people came up with a PV-PMSG wind system that directly 

links solar panels to the grid and employs multiloop nonlinear control. While this ensured some stability, the complexity 

of design also brought about other major hurdles [15]. Another team integrated a qZSI-based STATCOM with PV systems 

to enhance power quality, and it brought down harmonic distortion to the extent of marvel; yet the exact tuning of 

parameters was difficult [16]. 

 

Using a different approach, the researchers dealt with a two-area thermal system with renewable sources, having the ICA-

tuned cascade controller handling the frequency deviations. The system got highly reactive and considered stability, 

demanding very accurate tuning of the ICA [17]. Machine learning now came onto the scene, with some researchers 

modeling and optimizing HRES with an aim toward better prediction and storage management; however, scale and variety 

of data were considered the stumbling points so far [18]. 

 

Other distances adopted included an adaptive hybrid fuzzy FOPID controller coupled with a virtual oscillator-based inverter 

to reduce battery stress and increase stability, but its complex tuning rendered practical deployment problematic [19]. Some 

were uttering cost-effective solutions by designing Wind-PV-BESS-FC-Electrolyzer systems with minimized converters 

for storage coordination towards uninterrupted power; however, controls management remains a big hurdle [20]. 

 

On the optimization back, microcontroller-based dynamic decision algorithms for solar-wind systems gave very strong 

economic returns at partial penetration and underperformed at full penetration [21]. Similarly, the hybrid forecasts of long 

term and short term for MPC for PV-battery building systems improved battery safety and operational efficiency, but the 

increase in model complexity and limited field testing reduced the areas of application [22]. Comprehensive reviews situate 

HRES as promising in improving reliability and reducing emissions but with cautionary notes on the difficulty of 

configuration optimization and uncertainty control [9]. Prescient MPCs for HPES along with CHP and BESS yielded 12% 

primary energy savings and 70% computational speedups at best but remain hindered by controller complexity as well as 

reliance on exact modeling [23]. 

 

The required enhancement of system reliability, efficiency, and sustainability through innovative solutions enhances the 

developing field of hybrid microgrids. Codec-free and prediction-based deep reinforcement learning control methods with 

Double Dueling Deep Q-Networks were employed for optimizing power flows while profiting from the market, minimizing 

carbon emissions, limiting peak loads, and maintaining battery health, thus marking a significant leap toward 

decarbonization and cost efficiency, along with operational resilience [24]. At the same time, power scheduling problems 

are relaxed from MINLP to MILP, enabling storage management and power exchange to occur in one-minute intervals 

online with drastic cuts to computation time [25]. 

 

Numerous adaptive algorithms take fuel utilization, load mismatch, power quality, battery degradation, and renewable 

unpredictability as inputs to enhance system reliability and energy storage behavior [26]. Fuzzy Markov models have been 
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used to accommodate subsystem failure and repair uncertainties within the wind, PV, battery, and converters to provide a 

more realistic microgrid reliability assessment when these systems operate under uncertain conditions [14]. Probabilistic 

reliability modeling further shows that component degradation is accelerated by intermittent renewables, which, in turn, 

reduce system availability [27]. Seasonal variation of renewable availability and environmental factors is demonstrated to 

have an appreciable impact on component failure rates and system reliability in a coastal microgrid environment integrating 

wind, tidal, and solar energy [28]. 

 

Monte Carlo simulations have been applied to hybrid AC microgrids experiencing high solar and wind penetration, 

stressing the seasonal variations of irradiance and wind speed [29]. It has been demonstrated that the optimal battery 

storage, combined with Markov-type modeling of failure, can reduce the Loss of Power Supply Probability (LPSP) by 

more than 40% [30]. Solar-wind hybrid AC microgrids under stochastic weather conditions, through adaptive inverter 

control, successfully correlate wind-solar fluctuations in favor of voltage stability and system adequacy [31]. On the other 

hand, hybrid reliability assessment frameworks using deterministic load flow and probabilistic renewable variability 

models had success in tracking down failure propagation at the distribution level [32]. 

 

Table 1: Optimization and Reliability in Source-Side Microgrid Control 

Ref  Technique Used Dataset/Case Used Key Findings Results Limitations 

 

[14]  

Multi-objective 

controllers, MPPT 

(electrical 

parameters), 

Sliding Mode & 

Backstepping 

Hybrid PV-Wind-

PMSG system 

Direct PV-grid connection 

without DC/DC converter; 

nonlinear control ensures 

stability 

Stable operation of 

hybrid system 

Complexity in 

controller 

design; 

intermittency 

of renewables 

 

[15]  

qZSI-based 

STATCOM, AFF-

SOGI, Fuzzy 

Logic optimized 

PI controller 

Smart grid 3P4W 

distribution 

Improved power quality 

and reactive compensation 

THD reduced from 

25.5% → 1.3% 

Complex 

system, 

sensitive to 

controller 

tuning 

 

[16]  

ICA-tuned 

(1+TD)³-TID 

cascade regulator 

Two-area thermal 

system with RES 

Addresses frequency 

deviations in LFC 

Achieved lowest 

performance index 

(0.091), faster 

response 

Requires 

precise ICA 

tuning; added 

complexity 

 

[17]  

ML models: 

regression, neural 

networks, 

ensemble 

Historical solar & 

wind datasets 

Predicts HRES 

performance, optimizes 

storage 

Improved 

prediction accuracy 

& real-time 

optimization 

Handling 

variability, 

model 

scalability 

 

[18]  

Hybrid adaptive 

fuzzy multistage 

FOPID; nVdPO-

based VOC 

Hybrid microgrid 

under varying 

solar/load 

Improved DC bus 

management; battery life 

extension 

Validated via 

OPAL-RT with 

reduced stress on 

BESS 

Complex 

design, 

requires 

advanced 

tuning 

 

[19]  

Hybrid Wind-PV-

BESS-FC-

Electrolyzer with 

lead compensator-

integrator 

MATLAB/Simulink 

hybrid model 

Eliminated PV converter; 

hydrogen generation via 

electrolyzer 

Improved 

efficiency, steady-

state stability 

Control 

coordination 

complexity 

 

[20]  

Intelligent EMS 

with dynamic 

decision algorithm 

(microcontroller-

based) 

Solar-Wind hybrid 

for residential unit 

Optimized renewable 

penetration scenarios 

Positive NPV, high 

IRR at 20–50% 

penetration 

Negative 

NPV, long 

payback at 

100% 

penetration 

 

[21]  

Hybrid prediction 

+ MPC 

Real office building 

(Japan) 

Enhances battery safety, 

CHP operation, and off-

grid optimization 

81.6% safety, 

36.4% CHP, 69% 

off-grid 

improvement 

Complex 

prediction 

design, limited 

validation 

 

. 

[22]  

Review of HRES 

(configuration, 

storage, sizing, 

control) 

Literature review HRES lowers emissions, 

improves reliability, 

lowers costs 

Comprehensive 

evaluation 

framework for 

designers 

Configuration 

selection, 

managing 

uncertainties 
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[23]  

DRL-based 

control schemes 

(prediction-based 

& prediction-free) 

with Double 

Dueling DQN 

(D3QN) 

Hybrid microgrid 

simulations under 

uncertainty 

Optimizes power flows 

while balancing profits, 

carbon goals, peak 

mitigation, and battery 

degradation 

Enhanced 

decarbonization, 

cost efficiency, and 

operational 

resilience 

Relies on 

accurate 

system 

modeling; 

scalability 

under extreme 

uncertainty 

not fully tested 

 

[24]  

MINLP → MILP 

conversion using 

McCormick’s 

relaxation, DIPPS 

with rolling 

predictive window 

Prosumers with 

storage and external 

power exchange 

Real-time power 

scheduling optimization 

feasible 

Solves in ~0.92s vs 

38.27s (97.6% 

faster) 

Limited to 

short 

predictive 

horizon; may 

struggle with 

larger-scale 

grids 

 

[25]  

Adaptive multi-

objective 

optimization 

framework 

Real-time energy 

system with ESS 

Dynamically balances fuel 

usage, power quality, 

battery degradation, and 

renewable use 

Improved 

reliability and ESS 

charging 

optimization 

Computational 

cost increases 

under high 

variability 

 

[26]  

Fuzzy Markov 

model for 

subsystem 

availability 

Wind–PV–Battery–

Converter hybrid 

microgrid 

Estimates 

availability/unavailability 

with fuzzy uncertainty 

Provides nuanced 

reliability 

assessment 

Complexity in 

parameter 

estimation 

 

[27]  

Probabilistic 

reliability with 

weather-

dependent failure 

rates 

Coastal hybrid 

microgrids 

Links intermittency to 

accelerated component 

degradation 

Improved 

planning/operation 

insights 

Requires 

extensive 

environmental 

data 

 

[28]  

Reliability 

evaluation 

considering 

temperature and 

intermittency 

Coastal microgrid 

with wind, tidal, and 

PV 

Shows resource variability 

strongly impacts reliability 

Demonstrated 

influence of 

temperature and 

renewable 

fluctuations 

Location-

specific; 

generalization 

limited 

 

[29]  

Probabilistic 

reliability + Monte 

Carlo simulations 

Hybrid AC 

microgrids (solar + 

wind) 

Seasonal solar/wind 

variations create major 

challenges 

Robust planning 

needed for 

reliability 

High 

computational 

load for large 

systems 

 

[30]  

Markov-based 

failure modeling 

Hybrid systems with 

varying storage 

Optimal storage reduces 

LPSP by >40% 

Enhanced supply 

adequacy 

Model 

sensitive to 

storage 

assumptions 

 

[31]  

Stochastic weather 

modeling with 

adaptive inverter 

control 

Solar–wind hybrid 

AC microgrids 

Identifies voltage 

instability from correlated 

fluctuations 

Adaptive inverter 

stabilizes system 

Requires 

advanced 

inverter tech, 

not widely 

deployed 

 

[32]  

Hybrid reliability 

framework 

(deterministic load 

flow + 

probabilistic 

variability) 

Distribution-level 

solar–wind hybrid 

microgrids 

Captures failure 

propagation more 

accurately 

Better failure 

prediction than 

traditional methods 

High 

data/compute 

requirements 

 

 

III. AI-BASED POWER QUALITY ENHANCEMENT TECHNIQUES 

 

Power quality improvement in a solar–wind hybrid energy system (SWHES) focuses on harmonic problems and 

voltage/frequency fluctuations, along with reactive power imbalances. Harmonics are inhibiting filters dealing traditionally 

with passive and active power filters parameters however, with AI-based controllers, the filters are found to be more 

adaptive through helping in dynamically tuning inverter switching patterns and predicting harmonic content under variable 

renewable generation [33]-[34]. Voltage and frequency oscillations stabilization remains critical in islanded and grid-

connected modes; hence, the RL and adaptive neural-type controllers were used to control DC-link voltage, suppress 
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transient oscillations, and provide frequency support when there is a fast change of load or resource [35]. For reactive 

power compensation, classical capacitor banks and static VAR compensators are now supplemented by AI-based control 

of grid-tied converters, which yields optimal reactive support and minimizes THD in real-time [36]. Moreover, intelligent 

hybrid schemes combining fuzzy logic and optimization algorithms (PSO, GA) display better performance in dynamic 

voltage regulation and improved LVRT performances [37]. Another promising domain of AI applications in SWHES is 

fault detection and classification; that is, machine learning models using SVM, RF, and CNN allow identification from 

patterns extracted out of current, voltage, and harmonic signatures of short-circuits, open-switch faults, and converter 

malfunctions [38]- [39]. Compared with rule-based approaches, AI-based fault detection is faster, has a higher detection 

rate under noisy data, and is more resistant to nonlinearities, making it necessary for ensuring the reliability-assured 

operational continuity of the hybrid renewable systems [40]. 

 

IV. COMPARATIVE ANALYSIS OF AI VS. CONVENTIONAL CONTROL  

 

Comparative studies in solar–wind hybrid energy systems based on conventional and AI-based control strategies have 

revealed notable performance gaps in major metrics. Traditionally, PI/PID and fuzzy controllers only provide satisfactory 

regulation at steady-state conditions but fail to maintain low total harmonic distortion (THD) and fast response during 

intermittency and nonlinear dynamics [41]-[42]. In contrast, AI-driven approaches such as reinforcement learning (RL), 

neural networks (NN), and hybrid optimization-based controllers ensure low THD (<5%), fast transient recovery, and high 

reliability amid stochastic solar–wind variations [43]-[44]. Case studies on grid-connected PV–wind plants further 

demonstrate the efficacy of AI-empowered control algorithms in cutting THD up to 40% and stabilizing frequency over 

classical loops [45]. Further, adaptive ML models operate to re-tune parameters interactively in accomplishing more 

efficiency and less energy loss, whereas their traditional counterparts demand offline tuning and manual calibration [46]. 

Moreover, scalability contracts in favor of AI approaches because the data-driven controller ensures its robustness in the 

microgrid scenario and in large-scale hybrid networks, while the conventional design suffers when exposed to high 

penetration levels or weak-grid scenarios [47]. Hence, the benchmarking results univocally pronounce AI methodologies 

preeminent regarding adaptability, efficacy, and long-sustainability, thus catapulting them as the key enablers for next-

generation hybrid renewable systems. Figure 2shows Comparative analysis of AI vs. Conventional control. 

 
Figure 2: Comparative analysis of AI vs. Conventional control [43], [44], [45], [46], [47] 

 

V. CHALLENGES AND LIMITATIONS  

 

Data requirements and generalization of the model: - AI controllers require large, diverse, and high-quality datasets to 

perform robustly. However, collecting these datasets is difficult for hybrid energy systems due to resource variability, 

operation constraints, and regional differences, making it hard to generalize the model into unraveled operational 

conditions. 

 

Real-time deployment on embedded/edge devices: - The majority of AI models are the most computationally intensive 

algorithms in training and inference, making their deployment on low-power embedded processors or edge devices rather 

challenging. Therefore, the real-time software advancement from real-time control to fast convergence and reliable decision 

making under a severe constraint of hardware resources is a major bottleneck in practice. 

 

Cybersecurity and reliability concerns: - Since AI hybrid system controllers rely heavily on communication networks, 

they can suffer cyberattacks, data manipulations, and denial-of-service attacks. Performance and reliability are also affected 

by changes in renewable generation levels, presenting a challenge of instability if AI algorithms are not properly fortified. 

 

Economic and implementation challenges: - AI-based interventions into hybrid systems require capital-intensive 

investments in advanced sensors, processors, and communication infrastructures. Also, technical expertise, regulatory 
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compliance, and integration with classic power systems form economic and operational challenges detrimental to rapid 

dispersion. 

 

VI. CONCLUSION 

 

This review emphasizes the pivotal role of AI-based methodologies in advancing control strategies and improving power 

quality in grid-integrated solar–wind hybrid energy systems. While traditional converter control approaches such as PWM 

and SVPWM remain effective under steady conditions, they are constrained by the intermittency and nonlinear dynamics 

inherent to renewable energy sources. In contrast, AI-driven solutions including deep reinforcement learning, machine 

learning-based forecasting, and hybrid optimization algorithms demonstrate superior adaptability and data-driven decision-

making, thereby enhancing efficiency, reliability, and resilience. This review also highlight the integration of advanced 

converter topologies, MPPT algorithms, and predictive controllers as critical enablers for reducing harmonic distortion, 

ensuring robust voltage regulation, and optimizing energy dispatch. Overall, this review concludes that AI-based control 

frameworks represent a transformative pathway toward achieving cleaner, smarter, and more reliable renewable energy 

integration into modern power grids. 
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