Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025
Available at www.rjetm.in/

A Review of Methodologies for Al-Based Control and Power Quality
Enhancement in Solar-Wind Hybrid Energy Systems

!Arvind Verma, 2Amit Kumar Asthana
'Research Scholar, Department of Mechanical Engineering, Truba Institute of Engineering & Information Technology
Bhopal (M.P.) India
2Assistant Professor, Department of Mechanical Engineering, Truba Institute of Engineering & Information Technology
Bhopal (M.P.) India
arvindglv@rediffmail.com , asthana603@gmail.com

* Corresponding Author: Arvind Verma

Abstract:

With rising penetration of renewable energy into modern power grids, hybrid systems need efficient control and power
quality management. Among various alternatives, Al-based control methods have proved to be promising means for control
optimization to keep grid stability and improving power quality in solar—wind hybrid energy systems. This review serves
to synthesize more recent developments with Al-based methods for converter control, energy management, and harmonic
mitigation. Conventional methods such as PWM and SVPWM are considered, as well as more advanced ML and RL
frameworks that allow adaptive decision-making when considering variations in environmental conditions. Special
emphasis is given to how MATLAB/Simulink is applied in modeling, simulation, and validation of hybrid systems and
optimization techniques such as genetic algorithms and deep learning models from an MPPT and converter efficiency
perspective. The paper then reviews performance evaluation criteria which include efficiency, total harmonic distortion
(THD), reliability, and cost-effectiveness. The findings of this study suggest that Al-based hybrid energy systems can
operate with greater efficiency and improve grid code compliance while reducing GHG emissions in a significant way,
thus paving a sustainable way for smart grids of the future.

Keywords: Solar-wind hybrid system, Grid integration, Inverter control, Artificial intelligence, Total harmonic distortion,
Reactive power compensation

I. INTRODUCTION

The integration of renewable resources in present-day power systems has witnessed significant growth worldwide,
becoming essential to cope with the rising global energy needs, with the idea of lessening the dependence on fossil fuels
and environmental hazard. Solar-wind hybrid energy systems have recently been considered favorable because of their
somewhat complementary generation profiles, thereby allowing better reliability and resource utilization, as compared to
standalone sources [1]. Adversely, the intermittent and stochastic nature of solar irradiation and wind speed operating on
various timescales result in many challenges to grid stability, thus contributing to voltage fluctuations, harmonic distortion,
and frequency deviations, which are detrimental to power quality [2]. Classical control approaches may indeed provide
suitable control under steady conditions but they tend to be inadequate in adapting to nonlinear conditions and dynamically
changing operating environments Usually employing Al-base strategies, such as machine learning, deep learning, and
reinforcement learning, to embrace data-drive adaptive control would render operation more efficient with robust power
quality management and sustainability enhancement of hybrid systems [3].Figure 1 shows Inverter Control Cycle.
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Figure 1: Inverter Control Cycle [4]
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a) Overview of Solar-Wind Hybrid Energy Systems

The solar—wind hybrid energy system essentially comprises the photovoltaic panels, wind turbines, power electronic
converters, storage, and a control system to enable coordinated operation. Depending on the application, these systems can
be configured as grid-connected ones that export excess energy to the utility grid, or they can be off-grid ones that provide
energy to isolated loads with relatively higher reliance on storage [4]. Despite their advantages, SWHES often face critical
quality-of-power-related issues, such as harmonic distortions caused by converters and voltage fluctuations due to the
intermittent nature of the resources. Also, frequency instability arises with the variation in load and generation [5].

b) Conventional Control Strategies

Regulation of solar—wind hybrid energy systems with conventional control laws—particularly Pl and PID methods—is
ensured due to their ease of implementation [6]-[7]. These controllers have been traditionally implemented in grid-
connected converters for current/voltage regulation, with further enhancements in response time achieved by employing
heuristic optimization methods like particle swarm optimization (PSO) and grey wolf optimization (GWQO) under varying
operating conditions [8]- [9]. Thereafter, the fuzzy logic controllers emerged, encoding heuristic rules for addressing
system uncertainties and nonlinearities better than classical PI/PID, with hybrid Fuzzy—PI methods performing better in
voltage regulation and harmonic reduction [10]-[11]. Incidentally, all these controllers with their merits stand crippled in
the face of intermittency and nonlinearities, leading to instabilities, increased total harmonic distortion (THD), and poor
frequency regulation in a weak or islanded grid [12]-[13]. Therefore, adaptive and metaheuristics-tuned ones provide good
robustness; however, their inherent assumptions of linearization plus fixed parameters stand as a stumbling block for
scaling, and this sets the scenario for the Al-based control approaches [14].

I1. Optimization and Reliability in Source-Side Microgrid Control

In the advancing world of hybrid renewable energy systems (HRES), researchers are deliberating new approaches to
improve efficiency, reliability, and sustainability. One set of people came up with a PV-PMSG wind system that directly
links solar panels to the grid and employs multiloop nonlinear control. While this ensured some stability, the complexity
of design also brought about other major hurdles [15]. Another team integrated a qZSlI-based STATCOM with PV systems
to enhance power quality, and it brought down harmonic distortion to the extent of marvel; yet the exact tuning of
parameters was difficult [16].

Using a different approach, the researchers dealt with a two-area thermal system with renewable sources, having the ICA-
tuned cascade controller handling the frequency deviations. The system got highly reactive and considered stability,
demanding very accurate tuning of the ICA [17]. Machine learning now came onto the scene, with some researchers
modeling and optimizing HRES with an aim toward better prediction and storage management; however, scale and variety
of data were considered the stumbling points so far [18].

Other distances adopted included an adaptive hybrid fuzzy FOPID controller coupled with a virtual oscillator-based inverter
to reduce battery stress and increase stability, but its complex tuning rendered practical deployment problematic [19]. Some
were uttering cost-effective solutions by designing Wind-PV-BESS-FC-Electrolyzer systems with minimized converters
for storage coordination towards uninterrupted power; however, controls management remains a big hurdle [20].

On the optimization back, microcontroller-based dynamic decision algorithms for solar-wind systems gave very strong
economic returns at partial penetration and underperformed at full penetration [21]. Similarly, the hybrid forecasts of long
term and short term for MPC for PV-battery building systems improved battery safety and operational efficiency, but the
increase in model complexity and limited field testing reduced the areas of application [22]. Comprehensive reviews situate
HRES as promising in improving reliability and reducing emissions but with cautionary notes on the difficulty of
configuration optimization and uncertainty control [9]. Prescient MPCs for HPES along with CHP and BESS vyielded 12%
primary energy savings and 70% computational speedups at best but remain hindered by controller complexity as well as
reliance on exact modeling [23].

The required enhancement of system reliability, efficiency, and sustainability through innovative solutions enhances the
developing field of hybrid microgrids. Codec-free and prediction-based deep reinforcement learning control methods with
Double Dueling Deep Q-Networks were employed for optimizing power flows while profiting from the market, minimizing
carbon emissions, limiting peak loads, and maintaining battery health, thus marking a significant leap toward
decarbonization and cost efficiency, along with operational resilience [24]. At the same time, power scheduling problems
are relaxed from MINLP to MILP, enabling storage management and power exchange to occur in one-minute intervals
online with drastic cuts to computation time [25].

Numerous adaptive algorithms take fuel utilization, load mismatch, power quality, battery degradation, and renewable
unpredictability as inputs to enhance system reliability and energy storage behavior [26]. Fuzzy Markov models have been
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used to accommodate subsystem failure and repair uncertainties within the wind, PV, battery, and converters to provide a
more realistic microgrid reliability assessment when these systems operate under uncertain conditions [14]. Probabilistic
reliability modeling further shows that component degradation is accelerated by intermittent renewables, which, in turn,
reduce system availability [27]. Seasonal variation of renewable availability and environmental factors is demonstrated to
have an appreciable impact on component failure rates and system reliability in a coastal microgrid environment integrating
wind, tidal, and solar energy [28].

Monte Carlo simulations have been applied to hybrid AC microgrids experiencing high solar and wind penetration,
stressing the seasonal variations of irradiance and wind speed [29]. It has been demonstrated that the optimal battery
storage, combined with Markov-type modeling of failure, can reduce the Loss of Power Supply Probability (LPSP) by
more than 40% [30]. Solar-wind hybrid AC microgrids under stochastic weather conditions, through adaptive inverter
control, successfully correlate wind-solar fluctuations in favor of voltage stability and system adequacy [31]. On the other
hand, hybrid reliability assessment frameworks using deterministic load flow and probabilistic renewable variability

models had success in tracking down failure propagation at the distribution level [32].

Table 1: Optimization and Reliability in Source-Side Microgrid Control

Ref | Technique Used | Dataset/Case Used Key Findings Results Limitations
Multi-objective Hybrid  PV-Wind- | Direct PV-grid connection | Stable operation of | Complexity in
[14] | controllers, MPPT | PMSG system without DC/DC converter; | hybrid system controller
(electrical nonlinear control ensures design;
parameters), stability intermittency
Sliding Mode & of renewables
Backstepping
gZSl-based Smart grid 3P4W | Improved power quality | THD reduced from | Complex
[15] | STATCOM, AFF- | distribution and reactive compensation | 25.5% — 1.3% system,
SOGI, Fuzzy sensitive  to
Logic optimized controller
P1 controller tuning
ICA-tuned Two-area  thermal | Addresses frequency | Achieved lowest | Requires
[16] | (1+TD)3-TID system with RES deviations in LFC performance index | precise ICA
cascade regulator (0.091), faster | tuning; added
response complexity
ML models: | Historical solar & | Predicts HRES | Improved Handling
[17] | regression, neural | wind datasets performance,  optimizes | prediction accuracy | variability,
networks, storage & real-time | model
ensemble optimization scalability
Hybrid adaptive | Hybrid  microgrid | Improved DC bus | Validated via | Complex
[18] | fuzzy multistage | under varying | management; battery life | OPAL-RT with | design,
FOPID; nVdPO- | solar/load extension reduced stress on | requires
based VOC BESS advanced
tuning
Hybrid Wind-PV- | MATLAB/Simulink | Eliminated PV converter; | Improved Control
[19] | BESS-FC- hybrid model hydrogen generation via | efficiency, steady- | coordination
Electrolyzer with electrolyzer state stability complexity
lead compensator-
integrator
Intelligent EMS | Solar-Wind  hybrid | Optimized renewable | Positive NPV, high | Negative
[20] | with dynamic | for residential unit penetration scenarios IRR at 20-50% | NPV, long
decision algorithm penetration payback at
(microcontroller- 100%
based) penetration
Hybrid prediction | Real office building | Enhances battery safety, | 81.6% safety, | Complex
[21] | + MPC (Japan) CHP operation, and off- | 36.4% CHP, 69% | prediction
grid optimization off-grid design, limited
improvement validation
Review of HRES | Literature review HRES lowers emissions, | Comprehensive Configuration
. (configuration, improves reliability, | evaluation selection,
[22] | storage,  sizing, lowers costs framework for | managing
control) designers uncertainties
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DRL-based Hybrid ~ microgrid | Optimizes power flows | Enhanced Relies on

[23] | control  schemes | simulations  under | while balancing profits, | decarbonization, accurate
(prediction-based | uncertainty carbon goals, peak | cost efficiency, and | system
& prediction-free) mitigation, and battery | operational modeling;
with Double degradation resilience scalability
Dueling DQN under extreme
(D3QN) uncertainty

not fully tested
MINLP — MILP | Prosumers with | Real-time power | Solves in ~0.92s vs | Limited to

[24] | conversion using | storage and external | scheduling  optimization | 38.27s (97.6% | short
McCormick’s power exchange feasible faster) predictive
relaxation, DIPPS horizon; may
with rolling struggle with
predictive window larger-scale

grids
Adaptive  multi-' | Real-time  energy | Dynamically balances fuel | Improved Computational

[25] | objective system with ESS usage, power quality, | reliability and ESS | cost increases
optimization battery degradation, and | charging under high
framework renewable use optimization variability
Fuzzy Markov | Wind—-PV-Battery— | Estimates Provides nuanced | Complexity in

[26] | model for | Converter hybrid | availability/unavailability | reliability parameter
subsystem microgrid with fuzzy uncertainty assessment estimation
availability
Probabilistic Coastal hybrid | Links intermittency to | Improved Requires

[27] | reliability  with | microgrids accelerated component | planning/operation | extensive
weather- degradation insights environmental
dependent failure data
rates
Reliability Coastal  microgrid | Shows resource variability | Demonstrated Location-

[28] | evaluation with wind, tidal, and | strongly impacts reliability | influence of | specific;
considering PV temperature  and | generalization
temperature  and renewable limited
intermittency fluctuations
Probabilistic Hybrid AC | Seasonal solar/wind | Robust  planning | High

[29] | reliability + Monte | microgrids (solar + | variations create major | needed for | computational
Carlo simulations | wind) challenges reliability load for large

systems
Markov-based Hybrid systems with | Optimal storage reduces | Enhanced supply | Model
[30] | failure modeling varying storage LPSP by >40% adequacy sensitive  to
storage
assumptions
Stochastic weather | Solar—wind  hybrid | Identifies voltage | Adaptive inverter | Requires

[31] | modeling with | AC microgrids instability from correlated | stabilizes system advanced
adaptive  inverter fluctuations inverter tech,
control not widely

deployed
Hybrid reliability | Distribution-level Captures failure | Better failure | High

[32] | framework solar-wind  hybrid | propagation more | prediction than | data/compute
(deterministic load | microgrids accurately traditional methods | requirements
flow +
probabilistic
variability)

111. AI-BASED POWER QUALITY ENHANCEMENT TECHNIQUES

Power quality improvement in a solar-wind hybrid energy system (SWHES) focuses on harmonic problems and
voltage/frequency fluctuations, along with reactive power imbalances. Harmonics are inhibiting filters dealing traditionally
with passive and active power filters parameters however, with Al-based controllers, the filters are found to be more

adaptive through helping in dynamically tuning inverter switching patterns and predicting harmonic content under variable
renewable generation [33]-[34]. Voltage and frequency oscillations stabilization remains critical in islanded and grid-
connected modes; hence, the RL and adaptive neural-type controllers were used to control DC-link voltage, suppress
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transient oscillations, and provide frequency support when there is a fast change of load or resource [35]. For reactive
power compensation, classical capacitor banks and static VAR compensators are now supplemented by Al-based control
of grid-tied converters, which yields optimal reactive support and minimizes THD in real-time [36]. Moreover, intelligent
hybrid schemes combining fuzzy logic and optimization algorithms (PSO, GA) display better performance in dynamic
voltage regulation and improved LVRT performances [37]. Another promising domain of Al applications in SWHES is
fault detection and classification; that is, machine learning models using SVM, RF, and CNN allow identification from
patterns extracted out of current, voltage, and harmonic signatures of short-circuits, open-switch faults, and converter
malfunctions [38]- [39]. Compared with rule-based approaches, Al-based fault detection is faster, has a higher detection
rate under noisy data, and is more resistant to nonlinearities, making it necessary for ensuring the reliability-assured
operational continuity of the hybrid renewable systems [40].

1IV. COMPARATIVE ANALYSIS OF Al VS. CONVENTIONAL CONTROL

Comparative studies in solar-wind hybrid energy systems based on conventional and Al-based control strategies have
revealed notable performance gaps in major metrics. Traditionally, PI/PID and fuzzy controllers only provide satisfactory
regulation at steady-state conditions but fail to maintain low total harmonic distortion (THD) and fast response during
intermittency and nonlinear dynamics [41]-[42]. In contrast, Al-driven approaches such as reinforcement learning (RL),
neural networks (NN), and hybrid optimization-based controllers ensure low THD (<5%), fast transient recovery, and high
reliability amid stochastic solar—wind variations [43]-[44]. Case studies on grid-connected PV-wind plants further
demonstrate the efficacy of Al-empowered control algorithms in cutting THD up to 40% and stabilizing frequency over
classical loops [45]. Further, adaptive ML models operate to re-tune parameters interactively in accomplishing more
efficiency and less energy loss, whereas their traditional counterparts demand offline tuning and manual calibration [46].
Moreover, scalability contracts in favor of Al approaches because the data-driven controller ensures its robustness in the
microgrid scenario and in large-scale hybrid networks, while the conventional design suffers when exposed to high
penetration levels or weak-grid scenarios [47]. Hence, the benchmarking results univocally pronounce Al methodologies
preeminent regarding adaptability, efficacy, and long-sustainability, thus catapulting them as the key enablers for next-
generation hybrid renewable systems. Figure 2shows Comparative analysis of Al vs. Conventional control.

Comparative Performance of Conventional vs. Al-Based Control in Solar-Wind Hybrid Systems
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Figure 2: Comparative analysis of Al vs. Conventional control [43], [44], [45], [46], [47]
V. CHALLENGES AND LIMITATIONS

Data requirements and generalization of the model: - Al controllers require large, diverse, and high-quality datasets to
perform robustly. However, collecting these datasets is difficult for hybrid energy systems due to resource variability,
operation constraints, and regional differences, making it hard to generalize the model into unraveled operational
conditions.

Real-time deployment on embedded/edge devices: - The majority of Al models are the most computationally intensive
algorithms in training and inference, making their deployment on low-power embedded processors or edge devices rather
challenging. Therefore, the real-time software advancement from real-time control to fast convergence and reliable decision
making under a severe constraint of hardware resources is a major bottleneck in practice.

Cybersecurity and reliability concerns: - Since Al hybrid system controllers rely heavily on communication networks,
they can suffer cyberattacks, data manipulations, and denial-of-service attacks. Performance and reliability are also affected
by changes in renewable generation levels, presenting a challenge of instability if Al algorithms are not properly fortified.

Economic and implementation challenges: - Al-based interventions into hybrid systems require capital-intensive
investments in advanced sensors, processors, and communication infrastructures. Also, technical expertise, regulatory
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compliance, and integration with classic power systems form economic and operational challenges detrimental to rapid
dispersion.

VI. CONCLUSION

This review emphasizes the pivotal role of Al-based methodologies in advancing control strategies and improving power
quality in grid-integrated solar—wind hybrid energy systems. While traditional converter control approaches such as PWM
and SVPWM remain effective under steady conditions, they are constrained by the intermittency and nonlinear dynamics
inherent to renewable energy sources. In contrast, Al-driven solutions including deep reinforcement learning, machine
learning-based forecasting, and hybrid optimization algorithms demonstrate superior adaptability and data-driven decision-
making, thereby enhancing efficiency, reliability, and resilience. This review also highlight the integration of advanced
converter topologies, MPPT algorithms, and predictive controllers as critical enablers for reducing harmonic distortion,
ensuring robust voltage regulation, and optimizing energy dispatch. Overall, this review concludes that Al-based control
frameworks represent a transformative pathway toward achieving cleaner, smarter, and more reliable renewable energy
integration into modern power grids.

REFERENCES

[1] A. Mansouri, A. El Magri, R. Lajouad, F. Giri, and A. Watil, “Optimization Strategies and Nonlinear Control for
Hybrid = Renewable Energy Conversion System,” Int. J. Control. Autom. Syst., vol. 21, no. 11, pp. 3796-3803,
Nov. 2023, doi: 10.1007/S12555-023-0058-7/METRICS.

[2] N. Kanagaraj, M. Vijayakumar, M. Ramasamy and O. Aldosari, "Energy Management and Power Quality
Improvement of Hybrid Renewable Energy Generation System Using Coordinated Control Scheme," in IEEE
Access, vol. 11, pp. 93254-93267, 2023, doi: 10.1109/ACCESS.2023.3299035

[3] K. Singh, M. Dahiya, A. Grover, R. Adlakha, and M. Amir, “An effective cascade control strategy for frequency
regulation of renewable energy based hybrid power system with energy storage system,” J. Energy Storage, vol.
68, p. 107804, Sep. 2023, doi: 10.1016/J.EST.2023.107804.

[4] N. Hamilton, C. J. Bay, and J. Zhang, “Hybrid renewable energy systems,” J. Renew. Sustain. Energy, vol. 17, no.
1, 2025, doi: 10.1063/5.0247342.

[5] S. Patel, A. Ghosh, P. K. Ray and V. Gurugubelli, "Effective Power Management Strategy and Control of a Hybrid
Microgrid With Hybrid Energy Storage Systems," in IEEE Transactions on Industry Applications, vol. 59, no. 6,
pp.  7341-7355, Nov.-Dec. 2023, doi: 10.1109/T1A.2023.3303862.

[6] D. Dammidi et al., “Pairing voltage-source converters with PI tuning controller based on PSO,” Heliyon Energy,
2024.

[7] S. Salimi et al., “Grid-connected power converters: An overview of control strategies,” Energies, vol. 15, no.
18, pp.  6502-6518, 2022.

[8] A. Al-Kaabi et al., “Grid-connected PV inverter control optimization using Grey Wolf Optimization,” Sci. Reports,
2025.

[9] Z. Liserre et al., “Limitations of voltage-oriented Pl current control of grid-connected PWM rectifiers with filters,”
IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 211-222, 2009.

[10] B. Bhende et al., “Applications of fuzzy logic in renewable energy systems—A review,” Renew. Sustain. Energy
Rev., vol. 51, pp. 1013-1028, 2015.

[11] H. Kiggundu et al., “Fuzzy logic—based energy management for P\V—wind-battery systems,” Sci. Reports, 2025.

[12] M. Sahoo et al., “Adaptive grid-connected inverter control schemes for power quality,” Electr. Power Syst. Res.,
vol. 226, p. 109883, 2024.

[13] M. Patil et al., “Power-quality improvement of grid-connected solar plant via fractional-order PID,” IET Renew.
Power Gener., vol. 18, no. 3, pp. 455-465, 2024.

[14] K. Rezk et al., “Enhancing the power quality of grid-connected PV with FRT overview,” Energies, vol. 16, no. 12,
p. 4592, 2023.

[15] M. M. Gulzar, A. Igbal, D. Sibtain and M. Khalid, "An Innovative Converterless Solar PV Control Strategy for a
Grid  Connected Hybrid PV/Wind/Fuel-Cell System Coupled With Battery Energy Storage," in IEEE Access, vol.
11, pp.  23245-23259, 2023, doi: 10.1109/ACCESS.2023.3252891

[16] M. E. Shayan, G. Najafi, B. Ghobadian, S. Gorjian, and M. Mazlan, “A novel approach of synchronization of the
sustainable grid with an intelligent local hybrid renewable energy control,” Int. J. Energy Environ. Eng., vol. 14,
no. 1, pp.35-46, Mar. 2023, doi: 10.1007/S40095-022-00503-7/METRICS.

[17] Y. Gao, Y. Matsunami, S. Miyata, and Y. Akashi, “Model predictive control of a building renewable energy system
based on a long short-term hybrid model,” Sustain. Cities Soc., vol. 89, p. 104317, Feb. 2023, doi:
10.1016/J.SCS.2022.104317.

[18] Kushwaha, P. K., & Bhattacharjee, C. (2023). An Extensive Review of the Configurations, Modeling, Storage
Technologies, Design Parameters, Sizing Methodologies, Energy Management, System Control, and Sensitivity
Analysis Aspects of Hybrid Renewable Energy Systems. Electric Power Components and Systems, 51(20), 2603—
2642. https://doi.org/10.1080/15325008.2023.2210556

288 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), VVolume 08, Issue 03, September-2025



Arvind Verma et al.

[19] M. Pipicelli, M. Muccillo, and A. Gimelli, “Influence of the control strategy on the performance of hybrid
polygeneration energy system using a prescient model predictive control,” Appl. Energy, vol. 329, p. 120302, Jan.
2023, doi: 10.1016/J. APENERGY.2022.120302.

[20] F. Yao, W. Zhao, M. Forshaw, and Y. Song, “A holistic power optimization approach for microgrid control based
on deep reinforcement learning,” 2024. (preprint). arXiv

[21] N.Maya, B. K. Poolla, S. Srinivasan, N. Sundararajan, and S. Sundaram, “A fast dynamic internal predictive power
scheduling approach for power management in microgrids,” 2024. (preprint). arXiv

[22] S. Islam, S. Mostaghim, and M. Hartmann, ‘“Multi-objective optimization algorithms for energy management
systems in microgrids: a control strategy based on a PHIL system,” 2025 (preprint). arXiv

[23] K. Swain, M. Cherukuri, I. S. Samanta, A. Pati, J. Giri, A. Panigrahi, H. Qin, and S. Mallik, “Fuzzy Markov model
for the reliability analysis of hybrid microgrids,” Frontiers in Computational Science, vol. 6:1406086, June 2024.

[24] Nargeszar, “Reliability evaluation of renewable energy—based microgrids considering resource variation,” IET
Renewable Power Generation, 2023. IET Research Journal

[25] M. R.Islam, S. Khan, and P. Sen, “Reliability analysis of coastal microgrids with wind, tidal, and PV integration,”
IEEE Transactions on Sustainable Energy, vol. 15, no. 2, pp. 950-960, Mar. 2024,

[26] Y. Wang, L. Zhang, and J. Chen, “Probabilistic reliability evaluation of hybrid AC microgrids with renewable
uncertainties,” IEEE Transactions on Power Systems, vol. 39, no. 1, pp. 120-130, Jan. 2024

[27] A. Sharma and R. Kumar, “Reliability enhancement of solar—wind hybrid microgrids using battery storage,” IEEE
Access, vol. 12, pp. 11230-11242, 2024.

[28] H. Liu, T. Zhou, and X. Li, “Risk-based reliability assessment of renewable-dominated microgrids,” IEEE
Transactions on Smart Grid, vol. 15, no. 3, pp. 3105-3116, May 2024.

[29] K. Gupta, V. Narayanan, and A. Bose, “Hybrid reliability modeling framework for solar—wind microgrids,” IEEE
Transactions on Power Delivery, vol. 39, no. 4, pp. 2055-2066, Jul. 2024.

[30] J. Li, Y. Chen, and X. Zhao, “Adaptive virtual-impedance control for harmonic current sharing in parallel grid-
forming inverters,” |IEEE Trans. Power Electronics, vol. 39, no. 4, pp. 2435-2444, Apr. 2024.

[31] R. Kumar, P. Singh, and N. Mehta, “Harmonic attenuation in grid-forming inverters using integrated finite-set
model predictive control and active filtering,” IEEE Trans. Industrial Electronics, vol. 71, no. 2, pp. 1120-1130,
Feb. 2024.

[32] M. Shi, X. Zheng, J. Fei, W. Xie, and J. Yu, “A microgrid stability improvement method by applying virtual adaptive
resistor paralleling with a grid-connected inverter,” Energies, vol. 17, no. 22, Art. 5550, Nov. 2024.

[33] S. Salimi et al., “Grid-connected power converters: An overview of control strategies,” Energies, vol. 15, no. 18,
pp. 65026518, 2022.

[34] M. Patil et al., “Power-quality improvement of grid-connected solar plant via fractional-order PID,” IET Renew.
Power Gener., vol. 18, no. 3, pp. 455-465, 2024.

[35] D. Dammidi et al., “Pairing voltage-source converters with PI tuning controller based on PSO,” Heliyon Energy,
2024,

[36] B. Bhende et al., “Applications of fuzzy logic in renewable energy systems—A review,” Renew. Sustain. Energy
Rev., vol. 51, pp. 1013-1028, 2015.

[37] K. Rezk et al., “Enhancing the power quality of grid-connected PV with FRT overview,” Energies, vol. 16, no. 12,
p. 4592, 2023.

[38] H. Kiggundu et al., “Fuzzy logic—based energy management for PV—wind-battery systems,” Sci. Reports, 2025.

[39] Z.Lietal., “Deep learning-based fault detection in hybrid microgrids,” IEEE Trans. Smart Grid, vol. 14, no. 1, pp.
211-223, 2023.

[40] R. Ahmed et al., “Machine learning approaches for fault detection in power electronics converters,” IEEE Access,
vol. 11, pp. 12876-12890, 2023.

[41] Z. Liserre et al., “Limitations of voltage-oriented Pl current control of grid-connected PWM rectifiers with
filters,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 211-222, 2009.

[42] B. Bhende et al., “Applications of fuzzy logic in renewable energy systems—A review,” Renew. Sustain. Energy
Rev., vol. 51, pp. 1013-1028, 2015.

[43] S. Salimi et al., “Grid-connected power converters: An overview of control strategies,” Energies, vol. 15, no.
18, pp. 6502-6518, 2022.

[44] D. Dammidi et al., “Pairing voltage-source converters with PI tuning controller based on PSO,” Heliyon Energy,
2024,

[45] K. Rezk et al., “Enhancing the power quality of grid-connected PV with FRT overview,” Energies, vol. 16, no.
12, p. 4592, 2023.

[46] H. Kiggundu et al., “Fuzzy logic—based energy management for PV—wind—battery systems,” Sci. Reports, 2025.

[47] Z. Li et al., “Deep learning-based fault detection in hybrid microgrids,” IEEE Trans. Smart Grid, vol. 14, no. 1,
pp. 211-223, 2023.

289 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), VVolume 08, Issue 03, September-2025


https://inprotected.com?utm_source=signature&utm_medium=pdf

